Java并发编程(四)并发三大特性-有序性

2020年1月21日 · 1777 字 · 4 分钟 · 有序性 并发

有序性

即程序执行的顺序按照代码的先后顺序执行。JVM 存在指令重排,所以存在有序性问题。

如何保证有序性

  • 通过volatile关键字保证有序性。

  • 通过内存屏障保证有序性。

  • 通过synchronized关键字保证有序性。

  • 通过Lock保证有序性。

有序性问题深入分析

public class ReOrderTest {
    private static int x = 0, y = 0;
    private static int a = 0, b = 0;

    public static void main(String[] args) throws InterruptedException {
        int i = 0;
        while (true) {
            i++;
            x = 0;
            y = 0;
            a = 0;
            b = 0;
            Thread thread1 = new Thread(() -> {
                shortWait(20000);
                a = 1;
                x = b;
            });
            Thread thread2 = new Thread(() -> {
                b = 1;
                y = a;
            });
            thread1.start();
            thread2.start();
            thread1.join();
            thread2.join();
            System.out.println("第" + i + "次(" + x + "," + y + ")");
            if (x == 0 && y == 0) {
                break;
            }
        }
    }

    public static void shortWait(long interval) {
        long start = System.nanoTime();
        long end;
        do {
            end = System.nanoTime();
        } while (start + interval >= end);
    }
}

结果

第13512次0,1)
第13513次1,0)
第13514次1,0)
第13515次0,1)
第13516次0,1)

指令重排序

Java语言规范规定JVM线程内部维持顺序化语义。即只要程序的最终结果与它顺序化情况的结果相等,那么指令的执行顺序可以与代码顺序不一致,此过程叫指令的重排序。

指令重排序的意义

JVM能根据处理器特性(CPU多级缓存系统、多核处理器等)适当的对机器指令进行重排序,使机器指令能更符合CPU的执行特性,最大限度的发挥机器性能。

在编译器与CPU处理器中都能执行指令重排优化操作

volatile重排序规则

volatile禁止重排序场景

  1. 第二个操作是volatile写,不管第一个操作是什么都不会重排序
  2. 第一个操作是volatile读,不管第二个操作是什么都不会重排序
  3. 第一个操作是volatile写,第二个操作是volatile读,也不会发生重排序

内存屏障

JMM内存屏障插入策略

  1. 在每个volatile写操作的前面插入一个StoreStore屏障
  2. 在每个volatile写操作的后面插入一个StoreLoad屏障
  3. 在每个volatile读操作的后面插入一个LoadLoad屏障
  4. 在每个volatile读操作的后面插入一个LoadStore屏障

0

JVM层面的内存屏障

在JSR规范中定义了4种内存屏障:

  • LoadLoad屏障:(指令Load1; LoadLoad; Load2),在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。

  • LoadStore屏障:(指令Load1; LoadStore; Store2),在Store2及后续写入操作被刷出前,保证Load1要读取的数据被读取完毕。

  • StoreStore屏障:(指令Store1; StoreStore; Store2),在Store2及后续写入操作执行前,保证Store1的写入操作对其它处理器可见。

  • StoreLoad屏障:(指令Store1; StoreLoad; Load2),在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能

由于x86只有store load可能会重排序,所以只有JSR的StoreLoad屏障对应它的mfence或lock前缀指令,其他屏障对应空操作

硬件层内存屏障

硬件层提供了一系列的内存屏障 memory barrier / memory fence(Intel的提法)来提供一致性的能力。

拿X86平台来说,有几种主要的内存屏障:

  1. lfence,是一种Load Barrier 读屏障
  2. sfence, 是一种Store Barrier 写屏障
  3. mfence, 是一种全能型的屏障,具备lfence和sfence的能力
  4. Lock前缀,Lock不是一种内存屏障,但是它能完成类似内存屏障的功能。Lock会对CPU总线和高速缓存加锁,可以理解为CPU指令级的一种锁。它后面可以跟ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG等指令。

内存屏障有两个能力

  1. 阻止屏障两边的指令重排序
  2. 刷新处理器缓存/冲刷处理器缓存

对Load Barrier来说,在读指令前插入读屏障,可以让高速缓存中的数据失效,重新从主内存加载数据;对Store Barrier来说,在写指令之后插入写屏障,能让写入缓存的最新数据写回到主内存。

Lock前缀实现了类似的能力,它先对总线和缓存加锁,然后执行后面的指令,最后释放锁后会把高速缓存中的数据刷新回主内存。在Lock锁住总线的时候,其他CPU的读写请求都会被阻塞,直到锁释放。

不同硬件实现内存屏障的方式不同,Java内存模型屏蔽了这种底层硬件平台的差异,由JVM来为不同的平台生成相应的机器码。